The Public Health Service of the U.S. Department of Health and Human Services has directed research/teaching institutions to develop programs to promote the health and safety of employees and students who have substantial animal contact. The program at Pacific Lutheran University consists of two components:

I. Health Care Program for Any Individual with Laboratory Animal Contact: This program consists of an assessment of health history and indicated diagnostic tests and immunizations (if required). Complete the last page of this packet (entitled “Animal Worker Questionnaire”), detach it, and return to the Chair of the Animal Care and Use Committee (Rieke Science Center Room #151).

II. Education: The attached pages contain informational material about several specific conditions or practices with which animal workers should be familiar. All employees and students with laboratory animal contact are required to read this material, complete the second-to-last page of this packet (entitled “Personnel Education Program Acknowledgement”), detach it, and return it to Chair of the Animal Care and Use Committee (Rieke Science Center Room #151). Access to animal labs will be restricted until the form is completed.

Note: It is not enough for you to simply read this information – you need to practice and follow the procedures in the laboratory setting! You should keep the rest of the material for future reference.

References:

1. Public Health Service Policy on Humane Care and Use of Laboratory Animals, National Institutes of Health, Office for Protection from Research Risks, March 1996.

Hygiene and Safety

Reporting Injury or Illness

It is the policy of Pacific Lutheran University that all incidents which result in an injury to faculty, staff or students be appropriately documented and reported. In the event of a work-related incident:

1. For a life-threatening emergency, call Campus Safety at 7911. For other injuries or illnesses, seek medical help at a local urgent care center or after hours at a local emergency room.

2. Report incident to your supervisor as soon as possible.

3. Fill out an Injury Report form, which can be found online at the Human Resources website under downloadable forms. Submit this form to your supervisor, and then have him/her turn it in to Human Resources.

Personal Hygiene

A number of personal hygiene issues apply to all workers who are exposed to animals:

1. There may be no eating, drinking, smoking or applying of cosmetics in areas where animals are housed or used.

2. No animals may be kept overnight anywhere except in the designated animal rooms. Exceptions require specific permission from the chair of the Institutional Animal Care and Use Committee.

3. Gloves must be worn at all times for the handling of animals, their fluids, tissues, or excreta. All contaminated or infected substances must be handled carefully to minimize aerosols and splatters. It is highly recommended that such procedures be carried out using properly maintained biological safety cabinets or other appropriate personal protective equipment such as goggles or physical containment devices.

4. Laboratory coats must be worn over street clothes when working with animals. This will decrease the contamination of street clothing. These laboratory clothes may not be worn during eating. In addition, laboratory clothing must be removed before exiting areas in which animals are utilized.

5. Additional precautions are necessary for a number of specific hazardous agents. The principal investigator is responsible for providing guidelines to his/her students for handling such agents. In addition, MSDS for all chemicals used in laboratories must be available.

6. All work surfaces must be decontaminated daily and after any spill of animal-related material with an appropriate disinfectant (i.e., quartenary ammonium compound such as Cavicide).

7. Careful hand washing must be done after handling of animals and prior to leaving the laboratory for any reason.

8. Certain infections are transmitted from animals to humans primarily by the animals' feces or urine entering a human's body by mouth. Examples of this usual means of transmission are Salmonella,
Shigella and Entamoeba. It cannot be stressed too much that every precaution must be taken to avoid mode of transmission. Be alert and use very careful personal hygiene.

Animal Bites, Scratches and Puncture Wounds

Bites and scratches are potential hazards associated with research animal contact. They may be prevented or minimized through proper training in animal handling techniques from the principal investigator in charge of the animals.

Several factors need to be considered when handling animals. Animals respond to sounds and smells in the same manner as people. They also hear, smell, and react to things that people might not detect. These reactions can produce injury to an animal handler. When approached by another animal or a person, many animals attempt to escape. This means that their “flight zone” was invaded. Being aware of an animal’s flight zone will help avoid injuries. Many animals are social and show visible signs of distress when isolated from others of their kind. Knowledge of species-specific animal behavior is important in reducing risks.

Animal bites, especially those by rodents that inflict little tissue damage, are sometimes considered inconsequential by personnel who are unfamiliar with the host of diseases that can spread by this mechanism. Serious complications can result from wound contamination by the normal oral flora of the animals involved. Personnel are expected to maintain current tetanus immunizations, and if injured seek prompt medical examination of wounds at a local urgent care facility or after hours at an emergency room and initiate veterinary evaluation of the animal involved. Rabies, B-virus infection, Hantavirus infection, cat-scratch fever, tularemia, and rat-bite fever are among the specific diseases that can be transmitted by animal bites.

Puncture wounds, caused primarily by fin spines in fishes, can lead to minor infections, which left untreated can lead to more severe localized infections and, in rare cases, a few highly pathogenic species can lead to death. As with animal bites, personnel are expected to maintain current tetanus immunizations, and if injured seek prompt medical examination of wounds at a local urgent care facility or after hours at an emergency room. Fish handlers’ disease and Mycobacterium infection are among the specific diseases that can be transmitted by spine-induced puncture wounds.

Sharps

Sharps are ubiquitous in animal care. Needles, broken glass, syringes, pipettes, and scalpels are all commonly used in animal facilities and laboratories. Puncture-resistant and leakproof containers for sharps must be available at critical locations in the facilities. Improper disposal of sharps with regular trash may expose custodial staff to wounds, and, potentially, to infectious agents and hazardous chemicals. Personnel must be educated in PLU’s Bloodborne Pathogens Exposure Control and Infectious Waste Management Program. Supervisors or the appropriate individuals are responsible for providing training and documentation. State and municipal regulations are specific in the requirements for proper disposal of sharps.
Basic rules to remember:

- Never recap needles after use - have a sharps container nearby.
- Dispose of syringes, needles, glass, vials, and scalpels in a sharps container only.
- If you cut yourself, perform first aid immediately. Report the incident to your supervisor, seek medical attention at an urgent care facility or after hours at a local emergency room, and fill out an Injury Report form. If you can safely identify the source of your injury, do so.

Human Allergies to Animals

Allergic reactions to animals are among the most common conditions that adversely affect the health of workers involved in the care and use of animals in research. One survey demonstrated that three-fourths of all institutions with laboratory animals had animal care workers with allergic symptoms. The estimated prevalence of allergic symptoms in the population of regularly exposed animal care workers ranges from 10% to 44%. An estimated 10% of laboratory workers eventually develop occupation-related asthma.

Symptoms

Allergies can be manifested in a number of ways, including allergic rhinitis (a condition characterized by runny nose and sneezing similar to hay fever), allergic conjunctivitis (irritation and tearing of the eyes), asthma, and contact urticaria ("hives," a skin condition which is caused by contact with a substance to which an individual is allergic). In rare instances, a person who has become sensitized to protein in the saliva of an animal experiences a generalized allergic reaction (anaphylaxis) when bitten by the animal. Anaphylactic reactions vary from mild generalized urticarial reactions to profound life-threatening reactions. Allergy to animals is particularly common in workers exposed to cats, rabbits, mice, rats, gerbils and guinea pigs.

Most of the reactions are of the allergic rhinitis and allergic conjunctivitis type. Less than half of these will actually be asthma. People who have a prior personal history or family history of asthma, hay fever, or eczema will be more likely to develop asthma after contact with animals. But these people do not seem any more likely to develop rhinitis and conjunctivitis than do people without such personal or family history. Because of this, it is necessary that everyone exercise certain precautions to attempt to prevent animal allergy. These attempts should not be focused only on people with atopic history.

Symptoms can develop anywhere from months to years after a person begins working with animals. A majority of the individuals who are going to develop symptoms will do so within the first year. It is extremely unusual for symptoms to be delayed until more than two years of animal contact.

Preventative Measures

Personnel must routinely follow the procedures below in order to prevent the development of animal allergy.

1. Animals must be housed, as well as manipulated and/or handled, in extremely well ventilated areas to prevent build-up of animal allergens.
2. Supervisors must issue personal protective equipment to their employees, and train them on how and when it is to be used.
3. Workers must always wear gloves and laboratory coats to prevent direct exposure to the animals, animal urine, and animal dander.
4. Frequent hand washing is important.
5. In order to prevent the inhalation of contaminated material, bedding must be changed three times a week, and masks must be worn during the changing of bedding. The contaminated bedding must be sealed in a plastic bag and thrown away in the garbage.

Despite adherence to preventive techniques, some individuals will develop allergies after contact with laboratory animals. Rarely will this be so severe that people are forced to change their line of work. More commonly, this can be controlled with the use of personal protective equipment (PPE) while working with animals. The use of gloves, laboratory coats, masks, eyewear, and other types of protective clothing that are worn only in animal rooms is encouraged. Once a person develops allergic symptoms, disposable surgical masks are usually ineffective. Some commercial dust respirators can exclude up to 98% of mouse urinary allergens. Employees must seek fit-testing and medical clearance from the university's Environmental Health and Safety Office when they wish to use a respirator. Anyone with symptoms related to animal exposure should seek medical diagnosis and treatment.

Tetanus

Tetanus (lockjaw) is an acute, often fatal disease caused by the toxin of the tetanus bacillus. The bacterium usually enters the body in spore form, often through a puncture wound contaminated with soil, street dust, or animal feces, or through lacerations, burns, and trivial or unnoticed wounds.

Preventative Measures

The Public Health Service Advisory Committee on Immunization Practices recommends immunization against tetanus every 10 years. An immunization is also recommended if a particularly tetanus-prone injury occurs in a person where more than five years has elapsed since the last immunization.

Action:

Everyone working around animals must have up-to-date tetanus immunizations. If you need a tetanus immunization or have questions regarding this issue, please contact your supervisor for further information.

Viral Diseases

Hantavirus Infection: Hemorrhagic Fever with Renal Syndrome and Nephropathia Endemica

The Hantaviruses, which can cause severe hemorrhagic disease, are widely distributed in nature among wild-rodent reservoirs. The severity of the disease produced depends on the strain involved. Strains producing hemorrhagic fever with renal syndrome are prevalent in southeastern Asia and Japan, and focally throughout Eurasia. Outbreaks of hantavirus infection characterized by a severe pulmonary syndrome resulting in numerous deaths have been recognized in the southwestern U.S. Infections associated with laboratory rodents have occurred in Russia, Scandinavia, Japan, and Belgium (MMWR 37(6); 87-90, 2/19/98).

Rodents in several genera have been implicated in outbreaks of the disease in the U.S. The transmission of hantavirus infection is through the inhalation of infectious aerosols. Extremely brief exposure times (five minutes) have resulted in human infection. Rodents develop persistent, asymptomatic infections, and shed the virus in their respiratory secretions, saliva, urine, and feces for
many months. Transmission of the infection can also occur by animal bite, or when dried materials contaminated with rodent excreta are disturbed, allowing wound contamination, conjunctival exposure or ingestion to occur. Recent cases that have occurred in the laboratory animal environment have involved infected laboratory rats. Person-to-person transmission apparently is not a feature of hantavirus infection.

Symptoms

The form of the disease known as nephropathia endemica is characterized by fever, back pain, and nephritis that causes only moderate renal dysfunction. With proper treatment, the infection is usually self-limiting. The form of the disease that has been noted after laboratory animal exposure fits the classical pattern of hemorrhagic fever with renal syndrome. The infection is characterized by fever, headache, myalgia, gastrointestinal bleeding, bloody urine, severe electrolyte abnormalities, and shock.

Preventative Measures

Human hantavirus infections associated with the care and use of laboratory animals can be prevented through the isolation or elimination of infected rodents and rodent tissues before they can be introduced into the resident laboratory animal populations.

Lymphocytic Choriomeningitis Virus Infection

Human infection with lymphocytic choriomeningitis (LCM) associated with laboratory animal and/or pet contact has been recorded on several occasions. LCM is widely distributed among wild mice throughout most of the world, and presents a zoonotic hazard. Many laboratory animal species are infected naturally, including mice, hamsters, guinea pigs, nonhuman primates, swine and dogs. But the mouse has remained the primary concern in the consideration of this disease. Athymic, severe-combined-immunodeficiency (SCID), and other immunodeficient mice can pose a special risk by harboring silent, chronic infections, which present a hazard to personnel.

The LCM virus produces a pantropic infection under some circumstances, and can be present in blood, cerebrospinal fluid, urine, nasopharyngeal secretions, feces, and tissues of infected natural hosts. Bedding material and other fomites contaminated by LCM-infected animals are potential sources of infection, as are infected ectoparasites. In endemically infected mouse and hamster colonies, the virus is transmitted in utero, or early in the neonatal period, and produces a tolerant infection characterized by chronic viremia and viruria, without marked clinical disease. Humans can be infected by parental inoculation, inhalation, and contamination of mucous membranes or broken skin with infectious tissues or fluids from infected animals. Aerosol transmission is well documented.

Symptoms

Humans develop an influenza-like illness characterized by fever, myalgia, headache, and malaise after an incubation period of 1-3 weeks. In severe cases of the disease, patients might develop meningoencephalitis. Central nervous system involvement has resulted in several deaths.
Rabies

Rabies is a relatively rare and devastating viral disease that results in severe neurologic problems and death. Rabies virus infects all mammals, but the main reservoirs are wild and domestic canines, cats, skunks, raccoons, bats, and other biting animals. The disease is virtually unheard of in commonly used laboratory animals. However, the incidence of rabies in wildlife in the U.S. has been rising in recent years, and the possibility of rabies transmission to dogs or cats with uncertain vaccination histories, and originating from an uncontrolled environment must be considered.

Rabies virus is most commonly transmitted by the bite of a rabid animal, or by the introduction of virus-laden saliva into a fresh skin wound or an intact mucous membrane. Airborne transmission can occur in caves where bats roost. Personnel who handle tissue specimens or other materials potentially laden with rabies virus during necropsy or other procedures should be regarded as “at-risk” for infection.

Symptoms

Rabies produces an almost invariably fatal encephalomyelitis. Patients experience a period of apprehension and develop headache, malaise, fever, and sensory changes at the site of a prior animal-bite wound. The disease progresses to paresis or paralysis, inability to swallow and the related hydrophobia, delirium, convulsions, and coma. Death is often due to respiratory paralysis.

Preventative Measures

Animals and animal tissues field-collected in research or teaching must be handled with care. Precautions must take into account the facts that infected animals may shed the virus in the saliva before visible signs of illness appear, and that rabies virus can remain viable in frozen tissues for an extended period. An excellent pre-exposure vaccine (human diploid cell vaccine) is available for those people at high risk of exposure.

Bacterial Diseases

Campylobacteriosis

Organisms of the genus *Campylobacter* have been recognized as a leading cause of diarrhea in humans and animals in recent years. Numerous cases involving the zoonotic transmission of the organisms in pet and laboratory animals have been described. Results of prevalence studies on dogs, cats, nonhuman primates, and group-housed animals suggest that young animals readily acquire the infection and shed the organism. Young animals are often implicated as the source of infection in zoonotic transmission. *Campylobacter* is transmitted by the fecal-oral route via contaminated food or water, or by direct contact with infected animals.

Symptoms

Campylobacter spp. produce an acute gastrointestinal illness, which, in most cases, is brief and self-limiting. The clinical signs of *Campylobacter* enteritis include watery diarrhea, abdominal pain, fever, nausea, and vomiting. The infection generally resolves with specific antimicrobial therapy. Unusual complications of the disease include a typhoid-like syndrome, arthritis, hepatitis, febrile convulsions, and meningitis. Although the treatment of animals with *Campylobacter* enteritis is useful
the control of the infection, the attempt to eliminate the carrier state in asymptomatic animals might be less rewarding.

Preventative Measures

Personnel must rely on the use of protective clothing, personal hygiene, and sanitation measures to prevent transmission of the disease.

Enteric Yersiniosis

Yersinia enterocolitica and Yersinia pseudotuberculosis are present in a wide variety of wild and domestic animals, which are considered the natural reservoirs for the organisms. The host species for Yersinia enterocolitica include rodents, rabbits, swine, sheep, cattle, horses, dogs, and cats. Yersinia pseudotuberculosis has a similar host spectrum and also includes various avian species. Human infections often have been associated with household pets, particularly sick puppies and kittens. Occasional reports of Yersinia infections in animals housed in the laboratory, such as guinea pigs, rabbits, and nonhuman primates, suggest that zoonotic Yersinia infection should not be overlooked in this environment. Yersinia spp. are transmitted by direct contact with infected animals through the fecal-oral route.

Symptoms

Yersinia enterocolitica produces fever, diarrhea, and abdominal pain. In some cases, lesions may develop in the lower small intestine, resulting in a clinical presentation that mimics acute appendicitis. Laboratory animals with yersiniosis should be isolated and treated, or culled from the colony.

Preventative Measures

Personnel must rely on the use of protective clothing, personal hygiene, and sanitation measures to prevent the transmission of the disease.

Fish Handler’s Disease

Fish handlers’ disease (also know as crayfish handlers’ disease or seal finger) can be caused by various bacteria, but Erysipelothrix insidiosa and various species of Vibrio have been found to cause this illness. These bacteria are part of the normal flora in most fish and do not cause disease to the host. The bacteria are present in the external mucous of many freshwater and marine fishes. The bacteria gain entry to the skin through cuts, punctures, and abrasions

Symptoms

Fish handler’s disease produces a painful itching or burning sensation at the site of injury. Swelling then occurs and the adjacent joints become stiff and painful. In rare cases, lymph node enlargement and inflammation may occur.

Preventative Measures and Treatment

Personnel must rely on the cautious handling of fish with sharp spines and the use of protective clothing (gloves) to prevent the transmission of the disease. Fish handlers’ disease can be treated with a local antibiotic cream or by various oral antibiotics (penicillin, tetracycline, erythromycin, chloramphenicol, and novobiocin). If left untreated, the injury will often heal in three to four weeks although later relapses are possible. Fish handlers’ disease can be prevented by thoroughly cleaning all marine cuts and injuries with antiseptic and keeping wounds dry and clean as well as wearing thick protective gloves when handling marine fish.
Leptospirosis

This is a contagious bacterial disease of animals and humans due to infection with *Leptospira interrogans* species. Rats, mice, field moles, hedgehogs, squirrels, gerbils, hamsters, rabbits, dogs, domestic livestock, other mammals, amphibians, and reptiles are among the animals that are considered reservoir hosts. Leptospires are shed in the urine of reservoir animals, which often remain asymptomatic and carry the organism in their renal tubules for years. The usual mode of transmission occurs through abraded skin or mucous membranes, and is often related to direct contact with urine or tissues of infected animals. Inhalation of infectious droplet aerosols and ingestion of urine-contaminated food or water are also effective modes of transmissions.

Symptoms
Clinical symptoms may be severe, mild or absent, and may cause a wide variety of symptoms including fever, myalgia, headache, chills, icterus and conjunctival suffusion. The disease can usually be treated successfully with antibiotics.

Preventative Measures
Minimize aerosols when cleaning bedding, wear dust mask and gloves, protect cuts with band aids.

Mycobacterium

Bacteria of the genus *Mycobacterium* entering the skin via penetrating wounds, lacerations, or skin abrasions cause *Mycobacterium* infections. *Mycobacterium* are gram-negative acid-fast rods and illness in humans is caused by three species including: *M. fortuitum*, *M. chelonei*, and *M. marinum*. Most infections result from bacteria entering abrasions during the cleaning or handling of contaminated aquaria.

Symptoms
Infections by *M. fortuitum* may lead to skin lesions, while infections by *M. marinum* may lead to a single granulomatous nodule at the site of infection. The infections will resolve themselves over a period of weeks or months unless treated with antibiotics. In rare cases, a localized infection may spread to adjacent lymph nodes. This more serious case is most often seen in previously immunocompromised patients.

Preventative Measures
Preventative measures include wearing gloves when cleaning aquaria or handling fish and thoroughly washing hands and arms after contacting aquaria or fish.

Plague

Plague, caused by *Yersinia pestis*, has not been identified as an important disease entity in the laboratory animal setting. However, focal outbreaks of this once devastating disease continue to be recognized worldwide, including the United States, where the disease exists in wild rodents in the western one-third of the country. In the United States, most human cases are related to wild rodents, but cats, dogs, coyotes, rabbits, and goats have also been associated with human infection.

Most cases are the result of bites by infected fleas, or contact with infected rodents. In human plague associated with nonrodent species, infection has resulted from bites or scratches, handling of infected animals (especially cats with pneumonic disease), ingestion of infected tissues, and contact with
infected tissues. Nonrodent species can serve as transporters of fleas from infected rodents into the laboratory.

Symptoms

Human plague has a localized (bubonic) form and a septicemic form. In bubonic plague, patients have fever and large, swollen, inflamed, and tender lymph nodes, which can suppurate. The bubonic form can progress to septicemic plague, with spread of the organism to diverse parts of the body, including lungs and meninges. The development of secondary pneumonic plague is of special importance because aerosol droplets can serve as a source of primary pneumonic or pharyngeal plague, creating a potential for epidemic disease.

Preventative Measures

Preventive measures in a laboratory animal facility should encompass the control of wild rodents and the quarantine, examination, and ectoparasite treatment of incoming animals with potential infection. Those measures need to be applied continuously for animals that are housed outdoors, and therefore have an opportunity for contact with plague-infected animals or their fleas. Vaccines are available for personnel in high-risk categories, but confer only brief immunity.

Rat-Bite Fever

Rat-bite fever is caused by either *Streptobacillus moniliformis* or *Spirillum minor*, two microorganisms that are present in the upper respiratory tracts and oral cavities of asymptomatic rodents, especially rats. These organisms are present worldwide in rodent populations, although efforts by commercial suppliers of laboratory rodents to eliminate *Strep. moniliformis* from their rodent colonies now appear to have been largely successful. The form of the disease caused by *Spirillum minor* can be clinically different from the disease produced by *Strep. moniliformis*. Most human cases result from a bite wound inoculated with nasopharyngeal secretions, but sporadic cases have occurred without a history of rat bite. Infection also has been transmitted via blood of an experimental animal. Persons working or living in rat-infested areas have become infected even without direct contact with rats.

Symptoms

In *Strep. moniliformis* infections, patients develop chills, fever, malaise, headache, and muscle pain. A rash, most evident on the extremities, follows. Arthritis occurs in 50% of *Strep. moniliformis* cases, but is considered rare in *Spirillum minor* infections. Complications of untreated cases of the disease include abscesses, endocarditis, pneumonia, and hepatitis.

Preventative Measures

Proper animal handling techniques are critical to the prevention of rat-bite fever.

Salmonellosis

Enteric infection with *Salmonella* spp. has a worldwide distribution among humans and animals. Among the laboratory animal species, rodents from many sources are now free from salmonella infection, due to successful programs of cesarean rederivation, accompanied by rigorous management practices to exclude the recontamination of animal colonies. The pasteurization of feeds has also contributed to the control of salmonellosis in laboratory animal populations. However, despite the efforts to eliminate the organism in laboratory animal populations, carriers continue to occur, as a result of infection by contaminated food, or other environmental sources of contamination. These carriers represent a source of infection for other animals and for personnel who work with animals.
Results of recent surveys in dogs and cats have indicated that the prevalence of infection remains approximately 10% among random-source animals. *Salmonella* continue to be recorded frequently among recently imported nonhuman primates. Infection with *Salmonella* is nearly ubiquitous among reptiles. Avian sources are often implicated in foodborne cases of human salmonellosis. Birds in a laboratory animal facility should be considered likely sources for zoonotic transmission. The organism is transmitted by the fecal-oral route, via food derived from infected animals, or from food contaminated during preparation, contaminated water, or direct contact with infected animals.

Symptoms

Salmonella infection produces an acute, febrile enterocolitis. Septicemia and focal infections occur as secondary complications. Focal infections can be localized in any tissue of the body, so the disease has diverse manifestations.

Preventative Measures

Whenever possible, animals known to be *Salmonella* free should be used in laboratory animal facilities. The use of antibiotic treatment of *Salmonella*-infected animals as a means of controlling the organism in a laboratory animal facility may be unrewarding, because antibiotic treatment can prolong the period of communicability. Personnel must rely on the use of protective clothing, personal hygiene, and sanitation measures to prevent the transmission of the disease.

Tuberculosis

Tuberculosis of animals and humans is caused by acid-fast bacilli of the genus *Mycobacterium*. Cattle, birds, and humans serve as the main reservoirs for these mycobacteria. Many laboratory animal species, including nonhuman primates, swine, sheep, goats, rabbits, cats, dogs, and ferrets, are susceptible to infection, and contribute to the spread of the disease.

M. tuberculosis is transmitted via aerosols from infected animals or tissues. This mode of transmission also applies to most of the other mycobacterial species that might be encountered in laboratory animal contact. Humans can contract the disease in the laboratory through exposure of infectious aerosols generated by the handling of dirty bedding, the use of high-pressure water sanitizers, or the coughing of animals with respiratory involvement. The bacteria may also be shed in droppings, or from skin exudates resulting from infected, ruptured lymph nodes.

Symptoms

The most common form of tuberculosis reflects the involvement of the pulmonary system, and is characterized by soft cough, which progresses to the coughing of blood or blood stained sputum. Other forms of the disease can involve any tissue or organ system, due to the spread via the blood stream. General symptoms as the disease progresses include weight loss, fatigue, lassitude, fever and chills.

Preventative Measures

The diagnosis of tuberculosis in humans and animals relies primarily on the use of the intradermal tuberculin skin test. The prevention and control of tuberculosis in a biomedical research facility require personnel education, periodic surveillance for infection in nonhuman primates and their handlers, and isolation and quarantine of any suspect animal. Animals confirmed positive will normally be euthanized.
Protozoal Diseases

Cryptosporidiosis

Cryptosporidium spp. have a cosmopolitan distribution and have been found in many animal species, including mammals, birds, reptiles, and fishes. Cross-infectivity studies have shown a lack of host specificity for many of the organisms. Among the laboratory animals, lambs, calves, pigs, rabbits, guinea pigs, mice, dogs, cats, and nonhuman primates can be infected with the organisms. Cryptosporidiosis is common in young animals, particularly ruminants and piglets.

Cryptosporidiosis is transmitted by the fecal-oral route and can involve contaminated water, food, and possibly air. Many human cases involve human-to-human transmission or possibly the reactivation of subclinical infections. Several outbreaks of the disease have been associated with surface water contaminants. A 1993 waterborne epidemic in Milwaukee, Wisconsin, was believed to involve more than 370,000 people. Zoonotic transmission of the disease to animal handlers has been recorded, including a recent report of cryptosporidiosis among handlers of infected infant nonhuman primates.

Symptoms

Although cryptosporidiosis has become identified widely with immunosuppressed people, the ability of the organism to infect immunocompetent people also has been recognized. In humans, the disease is characterized by cramping, abdominal pain, profuse watery diarrhea, anorexia, weight loss, and malaise. Symptoms can wax and wane for up to 30 days, with eventual resolution. However, in immuno-compromised persons, the disease can have a prolonged course that contributes to death.

Preventative Measures

Appropriate personal-hygiene practices should be effective in preventing the spread of infection. No pharmacological treatment is effective for this infection.

Giardiasis

Many wild and laboratory animals serve as a reservoir for _Giardia_ spp., although cysts from human sources are regarded as more infectious for humans than are those from animal sources. Dogs, cats, and nonhuman primates are most likely to be involved in zoonotic transmission. According to recent surveys of endoparasites in dogs, the prevalence of _Giardia_ generally ranges from 4 to 10%, and approaches 100% in some breeding kennels. Giardiasis is transmitted by the fecal-oral route chiefly via cysts from an infected person or animal. The organism resides in the upper gastrointestinal tract where trophozoites feed and develop into infective cysts. Humans and animals have similar patterns of infection.

Symptoms

Infection can be asymptomatic, but anorexia, nausea, abdominal cramps, bloating, and chronic, intermittent diarrhea are often seen. Although the organism is rarely invasive, severe infections can produce inflammation in the bile and pancreatic ducts, and damage the duodenal and jejunal mucosa, resulting in the malabsorption of fat and fat-soluble vitamins.

Preventative Measures

Identification and treatment of giardiasis in a laboratory animal host, in combination with effective personal hygiene measures should reduce the potential for zoonotic transmission in a laboratory animal facility.
Toxoplasmosis

Toxoplasmosis is a disease caused by an organism called *Toxoplasma gondii*. Wild and domestic cats are the only definitive hosts of this organism. Approximately 30% of the United States human population has had this disease at some time. Usually this disease is quite mild and may be mistaken for a simple cold or viral infection. Swollen lymph nodes are common. In addition, it is common to have a mild fever, general washed-out feeling, and mild headaches. Rarely, more serious illness can occur, with involvement of the lungs, heart, brain or liver.

Symptoms

People acquire this disease by eating infected beef or pork which is uncooked or undercooked, or by ingestion of food, water, or other material that has been contaminated by feces of an infected cat. At any one time, about 1% of all cats will be shedding toxoplasma oocysts in their feces. Toxoplasmosis can have severe consequences in pregnant women and immunologically impaired people. In pregnant women with a primary infection, a transplacental infection of the fetus may occur. In early pregnancy, the fetal infection can result in death of the fetus or chorioretinitis, brain damage, fever, jaundice, hepatosplenomegaly, and convulsions at birth, or shortly thereafter. Fetal infection during late gestation can result in mild or subclinical disease. Primary infection in immunosuppressed people can be characterized by pneumonia, myocarditis, brain involvement, and death.

Preventative Measures

To prevent infection of human beings by *T. gondii*, people should wash their hands thoroughly with soap and water after handling meat. All cutting boards, sink tops, knives, and other utensils that come in contact with uncooked meat should be washed with soap and water. Meat should be cooked until a temperature of 151°F (66°C) has been reached before consumption by human beings or other animals. Tasting while cooking meat, or while seasoning homemade sausages should be avoided.

Pregnant women should avoid contact with cat feces, soil, or uncooked meat. Cat litter and cat feces should be disposed of promptly before sporocysts become infectious, and gloves should be worn in the handling of potentially infective material.

Because most cats become infected by eating cyst-contaminated tissues, pet cats should be fed only dry, canned, or cooked food. Cats should never be fed uncooked meat, viscera, or bones, and efforts should be made to keep pet cats indoors to prevent hunting. Because cats cannot use plant sources of vitamin A, some owners feed their cats uncooked liver to improve their fur. This practice should be discouraged, because *T. gondii* cysts frequently are found in livers of food animals, and commercially available cat foods contain most essential nutrients.

It is extremely important that pregnant women not be allowed to work with cats in the laboratory setting. During pregnancy, animal care workers who have been assigned to cleaning cat cages must be reassigned to other jobs.
Rickettsial Diseases

Cat-Scratch Fever

Bartonella henselae, a newly described rickettsial organism, has been directly associated with cat-scratch fever. This gram-negative, pleomorphic organism has been demonstrated to produce chronic, asymptomatic bacteremia, especially in younger cats, for at least 2 months, and possibly for as many as 17 months. The organism has been isolated on fleas that fed on infected cats, and fleas have been shown to be capable of transmitting the organism between cats. This finding suggests that fleas could serve as a vector in zoonotic transmission. A recent prevalence survey indicated that approximately 49% of pet and pound/shelter animals have blood cultures positive for this organism. Of patients with the disease, 75% report having been bitten or scratched by a cat, and over 90% report a history of exposure to a cat. Most cases of the disease appear between September and February, and the incidence peaks in December.

Symptoms

The disease begins with inoculation of the organism into the skin (bite or scratch) of an extremity, usually a hand or forearm. A small papule appears at the site of inoculation several days later, and is followed by vesicle and scab formation. The lesion resolves within a few days to a week. Several weeks later, regional lymph node swelling occurs, and can persist for months. Pus formation and rupture of the lymph node sometimes occurs. Cat-scratch fever can progress to a severe systemic or recurrent infection that is life-threatening in immuno-compromised hosts.

Preventative Measures

The use of proper cat-handling techniques, protective clothing, and thorough cleansing of wounds should minimize the likelihood of personnel exposure to the organism of cat-scratch fever.
Personnel Education Program Acknowledgement

I have received and read the Pacific Lutheran University *Occupational Health for Animal Workers Education and Prevention* document (dated January, 2007), including the articles on “Reporting Injury or Illness,” “Personal Hygiene,” “Animal Bites, Scratches and Puncture Wounds,” “Sharps,” “Human Allergies to Animals,” “Tetanus,” and the discussions of the various zoonoses which are important to laboratory animal personnel.

Federal policy requires Pacific Lutheran University to document that this information has been provided to you. Furthermore, you are required to fully read this document before handling any animals.

___ ____________________________
Signature Date

___ ____________________________
Name Typed or Printed Phone

Department Animal Care & Use Protocol #(s)

Note: If you are the principal investigator, please check here (). If not, please name the principal investigator(s) of the “Animal Care and Use Protocol(s)”:

PLEASE DETACH THIS PAGE AND RETURN TO:
Dr. Jacob Egge, Chair
PLU Animal Care and Use Committee
Rieke Science Center Room #151
Animal Worker Questionnaire
This form must be re-submitted every three years
(Please Print Legibly)

Name: ______________________________ Department: ______________________________

Job Title: ____________________________ Principal Investigator: ___________________________

Protocol Number: _______________ Work Telephone #: ________________ Date: _______________

1. With which specific animals will you be working?
 __
 __

2. Please describe, in your own words, the type and extent of animal contact that you will have:
 __
 __

3. Have you had a tetanus shot? ____ No ____ Yes If yes, please provide date ______________

4. Are you under a physician’s care for any medical condition? ____ No ____ Yes

5. Do you have any allergies? ____ No ____ Yes If yes, please specify.
 __
 __

6. Have you had, or currently have, any problems working around animals? ____ No ____ Yes
 If yes, please list dates and the type of problems.
 __
 __

7. List agents used in animal work:
 Chemical (includes anesthetics) __
 Biological __

8. Other comments: __
 __

PLEASE DETACH THIS PAGE AND RETURN TO:
Dr. Jacob Egge, Chair
PLU Animal Care and Use Committee
Rieke Science Center Room #151